Der Plan
Mit meinem Prusa i3 3D-Drucker bin ich eigentlich sehr zufrieden, denn er werkelt in der Bastelkammer mehr oder weniger zuverlässig vor sich hin. Leider produzieren aber gerade die Schrittmotoren mit ihrer „Musik“ eine ziemlich nervige Geräuschkulisse, die es mitunter schwer machen, konzentriert in der Werkstatt parallel Basteleien nachzugehen.
Vor diesem Hintergrund habe ich mich nach einem mehr oder weniger geräuschhemmenden Gehäuse umgesehen, und bin bei einer schicken Holzkonstruktion hängengeblieben. Dieses Druckerhäuschen erfüllt dabei mehrere Aufgaben: Es dämpft (hoffentlich) die Druck-Geräusche etwas, hält die Umgebungstemperatur in der Nähe des Druckers weitestgehend konstant (wichtig für den Druck, wenn die Umgebungstemperatur deutlich geringer ist, wie es in der Bastelkammer schon mal vorkommen kann – es ist ja kein Wohnzimmer) und schützt den Drucker zudem vor Staub und sonstigen Verschmutzungen, die so in einer Werkstatt herumwirbeln können.
Zunächst dachte ich eigentlich nur an den Bau eines entsprechenden Gehäuses, doch es keimte dann bei mir der Entschluss, meinen Prusa einem Upgrade zu unterziehen, bei dem es nicht nur bei einem Gehäuse bleiben soll.
Da der Drucker in der Bastelkammer steht, ich dort aber nicht bei jedem (längeren) Druck anwesend sein will, wollte ich eine Art Fernsteuerung und Überwachungsmöglichkeit. Bei meinen Recherchen zu dem Thema stieß ich auf die Software Octoprint, die auf einem Raspberry Pi läuft. Mit diesem Setup kann der Drucker via Wlan überwacht und gesteuert werden, eine angeschlossene USB-Kamera liefert sogar Live-Bilder oder ermöglicht Zeitraffer-Aufnahmen des Druckprozesses zu machen. Diese Erweiterung wollte ich daher ebenfalls vornehmen, da ich noch ein Raspberry Pi B ungenutzt liegen habe.
Um den Drucker später im Gehäuse unterzubringen und betreiben zu können, ist auch die Verlängerung der Verkabelung nötig, da ich das ATX-Netzteil und die Arduino-Ramps-Steuerung außerhalb des Gehäuses anbringen möchte – insb. unter dem Gesichtspunkt der Kühlung sollen diese Komponenten nicht innerhalb des Gehäuses untergebracht werden. Daher muss mehr oder weniger die gesamte Verkabelung angefasst werden – eine gute Gelegenheit das Hotend auch gleich zu tauschen – bisher nutze ich noch mein China-PLA-Hotend – mit diesem bin ich prinzipiell sehr zufrieden. Dennoch möchte ich zukünftig neben PLA auch ABS, Nylon usw. verarbeiten können. Daher wird dieses nun gegen mein E3D Ganzmetall-Hotend ausgetauscht, welches schon seit einiger Zeit im Regal auf seinen Einsatz wartet. Mit dem E3D ist dann auch der Druck von Nylon und ABS sowie neuer PLA-Mischungen mit Kohlefaser möglich.
Das Gehäuse entsteht
Zurück zum oben erwähnten Gehäuse. Da ich mein Prusa mit einer Versteifung versehen habe konnte ich die recherchierten Konstruktionsdaten nicht einfach übernehmen. Zudem hängt die Konstruktion auch vom verfügbaren Material ab. Aus dem Grund habe ich mich nach Ermittlung der nötigen Innenmaße an die Konstruktion meines Gehäuses gemacht, dabei habe ich mich aber stark an das o.g. Design angelehnt, wobei ich noch eine zusätzliche Wartungsklappe in der Rückwand hinzugefügt habe, um ggf. an den Drucker auch von der Rückseite gelangen zu können. Abweichend von dem ursprünglichen Design nutze ich meine bisherige Filament-Halterung weiter. Das Gehäuse selbst basiert auf zwei Holzarten: MDF (in den Stärken 13mm und 19mm) sowie Birken-Multiplex (18mm). Für die Montage des Netzteiles und der Arduino-Ramps-Kombination nutze ich diese Halterungen. Im Inneren des Case werde ich noch LED-Lichtstreifen zur Beleuchtung einkleben und die USB-Kamera anbringen.
So sieht die das entworfene Gehäuse aus:

CAD-Modell: Die Vorderansicht. Vorne wir das Gehäuse mit einer durchsichtigen PS-Platte, die einfach nur eingelegt wird, verschlossen.

CAD-Modell: Ansicht auf die Rückwand – gut zu erkennen ist die Aussparung, die für die Wartungsklappe ist.
Die Konstruktionszeichnungen werde ich hier demnächst einstellen.
Update zum Bau des Gehäuses (I):
In den letzten Tagen habe ich mir passendes Holz im Baumarkt beschafft und dort auch gleich grob rechtwinkelig zuschneiden lassen. Anschließend ging ich daran, die einzelnen Platten anzuzeichnen und an der Kreissäge in die richtigen Geometrien zu sägen. Den Ausschnitt der Rückwand und die Ausklinkungen der inneren Seitenplatten machte ich mit der Stichsäge. Die großen Löcher in den Platten sind mittels Forstner-Bohrer gemacht. Die Aussparung für die Wartungsklappe in der Rückwand ist mit der Oberfräse gemacht.
Die Montage habe ich nun auch fast erledigt: Die Platten sind stumpf mit Schrauben verbunden (vorher habe ich alle Schraubenlöcher vorgebohrt: 0,7x Aussenduchmesser ergbit den Durchmesser für das Kernloch bei Spax-Schrauben und mit einem Kegelsenker entsprechend abgesenkt) und die Kontaktflächen zusätzlich mit Leim versehen. Die Birken-Multiplexplatten werden nach dem Lackieren (inkl. Vorstreichen) mit den inneren MDF-Platten von innen per Spax-Schrauben befestigt.
Hier mal einige Bilder zum Bau:

Zusähen der einzelnen Teile: Auch an der Kreissäge wird gearbeitet – hier entsteht eine 70°-Schräge an der Stirnseite einer Leiste.

Die obere Leiste ist verschraubt. Zu erkennen ist ein Lücke an der inneren Seitenwand – ich habe die Ausklinkung zu großzügig ausgesägt…

Holzspachtel dient zum ausgleichen von Unebenheiten, Kanten und zum verdecken der Senkkopfschraubenköpfe.

Der Holzspachtel ist angeschliffen, aber noch nicht ganz eben. Der Schraubenkopf ist nicht mehr zu sehen.
Update (II): Lackieren, Frontscheibe…

Lackiermaterial: Die MDP-Platten habe ich vorgestrichen und dann mit Acryl-Lack in drei Schichten mit der Rolle lackiert.

Klarlack für die Birken-Multiplexseitenplatten. Da Öl verdunsten kann, habe ich mich für den Klarlack entschieden.

Die Handgriffe sind aus dem Baumarkt. Die mitgelieferten Schrauben sind zu groß und daher gegen kürzere Schrauben getauscht.
Eingetroffen: LED-Streifen, weiß, für die Innenbeleuchtung:
Für die feste Montage des Prusa i3 im Gehäuse werde ich diese Befestigungen nutzen, die ich bei thingiverse gefunden habe – den Drucker werde ich schon einmal anwerfen…
Leider ist die o.g. Befestigung für M8-Gewindestangen konstruiert – ich habe aber M10-Gewindestanden verbaut. Aus dem Grund habe ich geschwind eine passende Befestigung konstruiert:
Die Druckdaten dazu stelle ich demnächst bei thingiverse ein – nun drucke ich mal vier Halterungen in knapp 3h (PLA, 30% Infill, 0.2mm Layer).
Update: Die Halterungen sind gedruckt:
Update (III): Gehäuse-Zeichnungen (Veröffentlicht unter der CC-Lizenz by-nc-sa):
Hier kommen die Zeichnungsblätter der einzelnen Holzteile für das Gehäuse – viel Spaß beim Nachbau…
Oder als DXF-Files sind die Zeichnungen hier zu finden.
Die Fernsteuerung mit Octoprint
Um Octoprint einzusetzen ist neben dem 3D-Drucker noch entsprechende Hardware erforderlich, dies sind:
- Rapsberry Pi B/ B+ oder 2
- USB-Kamera
- Wlan-Stick (alternativ LAN)
- SD-Karte (16GB)
- USB-Netzteil (mind. 1A)
- USB-Kabel (um den RPi später mit dem 3D-Drucker zu verbinden)
- (SD-Karten-Reader, HDMI-Kabel, USB-Tastatur – nur zum ersten Setup nötig)

Octoprint mit dem nötigen Zubehör: SD-Karte, Raspberry Pi B, USB-Wlan-Adapter, USB-Kamera, USB-Hub, Steckernetzteil (von vorne links im Uhrzeigersinn).
Softwareseitig ist die Sache sehr einfach. Auf der Website von Octoprint findet sich ein fertiges, extra für den RPi angefertigtes Disk-Image namens Octopi. Diese ist herunter zu laden und mit einer geeigneten Image-Writer-Software auf der SD-Karte zu installieren. Ich nutze dazu die Software Win32 Disk Imager. Nach erfolgreicher Installation ist die Erst-Konfiguration des Linux-Systems vorzunehmen. Ist das erledigt und die LAN oder WLAN-Verbindung steht, kann über den Browser Octoptint direkt aufgerufen werden.
Wie man das alles macht, wird in diesem Video gut erläutert, bzw. kann hier nachgelesen werden:
Ich werden dieses Posting jeweils dem Projektfortschritt anpassen – also schaut einfach von Zeit zu Zeit hier vorbei.
Soweit für heute
Horrido und stay tuned!