IPSC-Training: Digitaler Helfer zur Verbesserung der Abzugskontrolle

IPSC ist eine tolle Schießdisziplin. Sie ist dynamisch und gleichzeitig verlangt sie vom Sportler eine gehörige Portion Präzision. Die Fähigkeit eine Pistole oder ein Gewehr präzise zu schießen ist jedoch eine vergängliche Fertigkeit. Wenn man sie nicht permanent trainiert, wird man diese Fertigkeit mit der Zeit verlieren. Gleiches gilt auch für die im IPSC-Sport wichtigen dynamischen Fertigkeiten wie Ziehen der Waffe, Magazinwechsel, Positionswechsel, Schießen aus unterschiedlichen Anschlagarten, dem Zielwechsel usw. Wer die notwendigen Fertigkeiten nicht immer wieder trainiert, wird im Wettbewerb das Nachsehen haben.

Sowohl die Fertigkeiten für den präzisen Schuss als auch die dynamischen Skills lassen sich gut daheim trainieren. Dazu ist nicht viel nötig: Etwas Zeit – ich wende ca. 15-30 Minuten (täglich) auf, etwas Platz (3 bis 5 Meter reichen), und passendes Equipment. Viele Schützen nutzen ihre eigentliche IPSC-Waffe und machen sogenanntes Dryfire-Training, d.h. die Waffe wird ohne Munition bei den jeweiligen Übungen abgeschlagen. Dies ist eine weit verbreitete Trainings-Variante. Es gibt jedoch immer mehr IPSC-Schützen, die statt des Dryfire-Trainings für das Training abseits des Schießstands auf Airsoft-Waffen und passende Targets zurückgreifen. Der Vorteil liegt auf der Hand: Es wird durch die Airsoft-Blowback-Waffen ein Rückstoß der Waffe simuliert, der zwar schwächer als der vom Original ist, aber dennoch der Realität näher kommt, als dies beim Dryfire der Fall ist. Genauso wichtig ist aber auch das Treffer-Feedback, welches der Schütze durch den Aufprall der Kugeln auf das Ziel erhält. Nicht zu vergessen ist natürlich das erhebliche Einsparpotential an Munition – Plastik BB-Kugeln kosten nur ein Bruchteil von echter Munition. Zudem sind die Targets günstiger als beispielsweise Laser-Trainingssystem-Targets, die auch eine gewisse Verbreitung gefunden haben.

Ich nutze seit geraumer Zeit eine Gasblowback-Airsoft-Pistole und auch einen Gasblowback-Karabiner zum IPSC-Training daheim, um an meinen Fertigkeiten auch außerhalb des Schießstandes kontinuierlich zu arbeiten. Zum Training verwende ich speziell dafür entwickelte 1:3-IPSC-Training Targets der Firma Tactrainers sowie DIY-Nachbauten. Meinen Trainingsparcour selbst baue ich auf den Vorschlägen von Saul Kirschs Buch „Perfect Practice“ daheim im angepassten Maßstab 1:3 im Keller auf. Für größere Distanzen nutze ich hin und wieder auch meinen Garten. Zur Zeitnahme für das dynamische Training kommt die Shot Timer Pro App auf meinen Smartphone zum Einsatz, denn damit werden die Schüsse der Airsoft-Waffen zuverlässig erkannt.

Wie Eingangs erwähnt nutzt alle Schnelligkeit nicht viel, wenn die Schusspräzision nicht passt. Über die Targets beim Live-Fire-Training und die Airsoft-Tactrainers-Targets bekommt man schon ein gutes Feedback, um dann im Training gezielt an seiner Verbesserung arbeiten kann. Doch es bleiben immer Unwägbarkeiten bei der Suche nach Fehlern. Ist es das fehlerhafte Visierbild, ein schlechter Anschlag oder mangelnde Abzugskontrolle? Um den möglichen Fehlerquellen auf die Spur zu kommen und um an diesen dann im Sinne einer Verbesserung gezielt arbeiten zu können, ist meiner Meinung mehr Feedback als nur ein Einschussloch oder Treffer auf das o.g. Trainigstarget nötig. Beim Präzisionsschießen ist die Abzugskontrolle wohl der wichtigste und zugleich schwierigste Aspekt. Gerade wenn es um das Schießen mit der Pistole geht. Denn dadurch, dass die Pistole so klein und kurz ist, und nur an einem Punkt fixiert ist, überträgt sich jede Bewegung gleich auf die Visierung – dadurch schleichen sich Fehler ein.

Was also kann man machen, um seine Abzugskontrolle zu verbessern, wenn man in der zeitlich so kurzen Periode zwischen Anschlag und Schussabgabe sein Handling der Waffe beim Abziehen nicht wirklich überprüfen kann?

Die Antwort kommt in Form eines kleinen Trainingsgerätes, welches mit Bewegungssensoren bestückt ist und an die Waffe montiert wird. Dieses Gerät sammelt die Daten der verbauten Sensoren und funkt sie in Echtzeit via Bluetooth an das eigene Smartphone, auf dem eine App werkelt, die die Informationen in nützliche Informationen für den Schützen umwandelt. Dieses System heißt MantisX. Ich habe mir dieses System beim deutschen Händler bestellt, doch leider ist die Lieferzeit mit knapp vier Woche sehr lang. Daher hat mir das Unternehmen netterweise ein Leihgerät zum Testen zur Verfügung gestellt. Meine bisherigen Erfahrungen mit MantisX beim täglichen Training daheim und auch beim Training auf dem Schießstand werde ich folgend etwas näher beleuchten.

 

Lieferumfang: Eine einseitige Anleitung, ein Sticker und MantisX in einem soliden Pelicase.

Gut untergebracht: MantisX und USB-Lagekabel im Pelicase.

 

 

Das Handling von MantisX

MantisX-Einheit auf einer WE Gforce Glock 19-Airsoft-Pistole zum Training daheim. Hier im Einsatz und Test mit einem Android-Phone. Die MantisX-Einheit ist direkt an die Picantinny-Rail am Frame montiert.

MantisX ist absolut einfach in der Handhabung. Es wir einfach an die Picatinny-Montageschiene der Pistole oder des Gewehrs montiert. Wer an seiner Pistole keine entsprechende Rail hat, der kann direkt bei MantisX Picatinny-Rail-Magazinboden-Halterungen für seine Waffe bestellen, die statt des Werksmagazinbodens am Magazin montiert werden. Diese Halterungen eignen sich auch gut für IPSC-Training mit Holster.

Für Schooter die mit einer Airsoft-Pistole trainieren und einen 3D-Drucker besitzen, habe ich eine Picatinny-Magazinboden-Montagen für KWA/KSC Airsoft Glock-Magazine konstruiert. Damit kann dann MantisX auch mit geholsteter Waffe genutzt werden, um dynamisches IPSC-Training durchzuführen. Hier geht es zu der STL-Datei zum Download. Diese Montage sollte idealerweise aus ABS oder Nylon gedruckt werden, da dies Material am widerstandsfähigsten ist. Als Infill habe ich aus Stabilitätsgründen 80-100 Prozent gewählt.

3D-CAD-Modell des eigens konstruierten KSC/KWA Magazinbodens mit Pictinny-Rail für die Befestigung der MantisX-Einheit.

Der konstruierte Magazinboden wird im Slicer für den Druck passend ausgerichtet.

Der Magazinboden ist aus ABS fertig gedruckt.

KSC/KWA-Glock 19 Airsoft-Magazin: Der gedruckte Magazinboden (grau) ersetzt den Ursprünglichen (schwarz).

KSC/KWA Glock 19 Airsoft-Magazin mit gedrucktem Magazinboden und montiertem MantisX.

Ansicht von der Rückseite des KSC/KWA-Magazins. Gut zu erkennen ist die USB-Ladebuchse der MantisX-Einheit.

KSC/KWA GLock 19 Airsoftpistole zum IPSC-Training mit montierter MantisX-Einheit am Magazin.

MantisX montiert am Magazin der KSC/KWA Glock 19 Airsoft-Pistole. Diese Montageart ist geeignet für das IPSC-Training mit Holster.

Nachdem man die MantisX-Einheit an der Rail befestigt hat, drückt man den kleinen Knopf an der Unterseite, bis die LED dauerhaft grün leuchtet. Anschließend startet der Schütze die MantisX-App auf seinem Smartphone (Bluetooth muss eingeschaltet sein) und verbindet die App per „CONNECT“-Taste. Und dann kann es mit dem Training auch schon losgehen.

Ist der Akku leer (Der Akku hält bei mir gut und gerne eine Woche bei regelmäßiger Nutzung (30 Min/täglich)) blinkt die LED. Mit dem mitgelieferten Micro-USB-Ladekabel lädt man MantisX mit einem USB-Ladegerät in ca. 3h auf.

 

Die Nutzung von MantisX

MantisX misst grundsätzliche Mikrobewegungen kurz vor dem Abziehen bis circa 300 Millisekunden danach. Das System ist so entworfen, dass es in zahlreichen Schießszenarien und mit gängigen Waffentypen arbeiten kann. D.h. von Dryfire über Livefire bis hin zu CO2-Systemen wie Luftdruck- und Airsoft-Waffen.

Startbildschirm der MantisX-App.

In „SETTINGS“ werden vor Beginn des eigentlichen Trainings die Einstellungen vorgenommen.

Ich nutze die MantisX App-Version 2.4.5. Über den Menü-Punkt „SETTINGS“ werden zunächst die Grundeinstellungen wie Waffentyp, Schusshand, Montageposition des Sensors usw. vorgenommen. Anschließend wechselt man in den „TRAIN“-Bereich. Dort stehen neun unterschiedliche Modi zu Verfügung, diese sind:

  • „Open Training“: In diesem Mode kann man sein eigenes Training tracken
  • „MantisX Benchmark“: 10 Schüsse, es wird die Präzision und die Zeit festgehalten
  • „Timed Benchmark“: So schnell und präzise wie möglich schießen. 5, 8 oder 10 Schuss
  • „Compressed Suprise Break“: Auf IPSC-Tonsignal so schnell und präzise wie möglich Abziehen
  • „Reload, in Battery“: Schnelles Nachladen und einen präzisen Schuss abgeben
  • „Reload, out of Battery“: Ungeladene Waffe nachladen und einen präzisen Schuss so schnell wie möglich abgeben.
  • „Reload, Tactical“: Taktische Nachladen und ein präziser Schuss.
  • „Primary Hand Only“: Schießen nur mit der starken Hand.

Die neun Modi sind in erster Linie für statisches Training vorgesehen. Für dynamisches IPSC-Training nutze ich lediglich den Modus „Open Training“.

Teil-Übersicht zu den verfügbaren Trainingsmodes in der App.

Unterschiedliche Trainingsmodi: Die App hält z.Z. neun unterschiedliche Modes zum Training bereit. Hier ist der „Compressed Suprise Break“ zu sehen. In acht Modes sind Anleitungsvideos eingebunden – das macht es sehr anschaulich.

 

Das Feedback von MantisX

Ist man im Trainings- oder im History-Modus, stellt MantisX drei unterschiedliche Datenvisualisierungsmodi zur Verfügung – das Shot-Chart mit dem Kreis, ein Movement Chart mit Linien- und Balkendiagramm und den Bewegungstracker mit einem Fadenkreuz. Damit lässt sich das aufgenommene Geschehen bei Schussabgabe ansehen und analysieren.

Der History-Screen der MantisX-App.

Das MantisX Shot Chart zeigt in den rot markierten Bereichen die Abzugsfehler-ausprägung und -richtung an.

Fehlerinterpretation und Tips von MantisX zu Abzugsfehlern sind in der App integriert.

Ein weiteres Beispiel, wie MantisX zu bestimmten Fehlerbildern Verbesserungstips gibt.

Unter den Charts, die während des Trainings anwählbar sind, finde ich das Shot-Chart für meine Zwecke am wenigsten hilfreich, denn es zeigt eigentlich immer Fehler an, obwohl ich tatsächlich keine merkliche Bewegung im Handgelenk zeige, bekomme ich das Feedback „Breaking Wrist up“. Aber für Anfänger ist das Chart sicherlich eine gute Hilfe, um Abzugsfehler zügig beheben zu können.

Welche Charts ich hingegen sehr hilfreich finde sind die beiden weiteren Screens. Denn jeder Schütze weiß, dass Bewegungen die man während des Haltens und beim Abziehen macht, den größten Einfluss auf die Präzision haben. D.h. die Minimierung der Bewegung ist der Schlüssel zum guten Treffer. Das Movement Chart zeigt einem die relative Höhe der Bewegung für jeden Schuss an – sowohl für das Halten als auch für das Abziehen. Je näher man an der Mittellinie ist, desto weniger Bewegung wird getrackt und der Score ist am höchsten.

Mit diesem Chart ist beispielsweise gut die Haltebewegungsdauer (blau) und die Abzugsdauer (gelb) abzulesen.

Aus meiner Sicht am wertvollsten ist die Darstellung des dritten Charts. Denn dort werden die tatsächlichen Bewegungen eines jeden Schusses nachgezeichnet. Die grüne Linie zeigt die Millisekunden vor dem Abziehen. Gelb ist die Bewegung während der Betätigung des Abzugs und die rote Linie zeigt den Bewegungsverlauf nach dem der Schuss gebrochen ist. In dem Chart sind somit alle relevanten Informationen vereint. Idealerweise will man die grüne und die gelbe Linie eng beieinander haben. MantisX zeigt einem, wie sich diese Beziehung tatsächlich verhält. D.h. langsames Anlegen mit einem konzentrierten Fokus auf die grundlegenden Schießfertigkeiten bringen grün und gelb sowohl auf dem Screen als auch auf dem Schießspiegel zusammen. Schnelles Schießen hingegen zeigt sich in einer größeren Ausdehnung von grün und gelb und letztlich vermutlich auch auf dem Spiegel.

Sehr aussagekräftig: Das Movementchart zu jedem abgegebenen Schuss in der MantisX-App.

Ergebnis-Analyse eines dynamischen Trainingsdurchlaufs – hier Ziehen aus dem Holster. Deutlich ist die lange Anhaltephase (blau) zu erkennen. Beim Abziehen ist die Waffe leicht nach rechts gewandert.

Fazit

Insgesamt bin ich von den Feedbackmöglichkeiten und den damit transparent werdenden Trainingsfeldern begeistert.

Die Hardware macht einen soliden Eindruck und ist bisher ohne Fehlfunktionen in Betrieb gewesen. Prima ist, dass MantisX die App regelmäßig durch Updates verbessert und damit zukunftssicher macht.

Nun ist es nur noch an dem Schützen selbst – also mir, seine Fertigkeiten bei der Abzugskontrolle mit dem System stetig zu Trainieren. D.h. das Feedback von MantisX zielgerichtet zur persönlichen Verbesserung einsetzen – ob nun beim heimischen Training oder auf dem Schießstand. Bisher habe ich das System daheim zusammen mit meiner Airsoft-Pistole genutzt. Aber auch auf dem Schießstand kam MantisX zum Einsatz, um an meinen Fertigkeiten zu arbeiten.

Auch auf dem Schießstand kommt MantisX zum Einsatz. Hier an einer Glock 17 auf 25 Meter.

Aus meiner Sicht sind die knapp 175 Euro für das Trainings-System gut angelegt. MantisX kann man z.Z. in Deutschland nur über www.kl-strategic.com beziehen. Der Firma danke ich für die Leihstellung des Testgerätes.

 

Horrido und stay tuned.

 

Nachtrag (25.10.2017)

Offensichtlich sind elektronische Trainingshilfen für den Schießsport gerade sehr angesagt. Ich bin kürzlich auf ein System namens KINETIC gestoßen, welches auf dieser Website angekündigt wird. Es handelt sich dabei im Kern offensichtlich um drei Bewegungssensoren, die an Ober- und Unterarm sowie Hand getragen werden und ihre Bewegungen via Bluetooth an einen Rechner senden. Mehr als diese Infos findet man z.Z. auf der Website von KINETIC nicht.

Diese Video scheint aber KINETIC im Test zu zeigen:

Also, man darf gespannt sein. Ich halte die diesbezüglichen Entwicklungen im Auge.

Update (30.10.2017)

Es wurde bei youtube erneut ein Video veröffentlicht, in dem das System beim IPSC-Training testweise eingesetzt wird. Das sieht schon interessant aus. Allerdings bleibt noch offen, wie es das Training mit welchen Informationen tatsächlich sinnbringend unterstützen kann.

Hier das Video:

Advertisements

Modellbau: Welrod MK II Nachbau

Technischer Modellbau ist eine meiner ganz großen Bastel-Leidenschaften. Angefangen von der Konstruktion über den Prototypenbau, der Optimierung bis hin zur Fertigung mittels unterschiedlicher Technologien macht diese Art des Modellbaus für mich spannend – besonders wenn es um den Nachbau von historischen Gerätschaften geht. Denn dann lernt man im Rahmen der nötigen Recherchen nicht nur etwas über die technische Seite von Dingen, sondern auch über die Zeit-Geschichte.

Schon seit meiner Kindheit sind die technischen Details und unterschiedlichen Konzepte von Handfeuerwaffen ein Feld, welches mich wegen seiner Diversität fesselt. Ob nun frühe Steinschloss-Gewehre, hoch anspruchsvolle und mit unter komplizierte Pistolenkonstruktionen bis hin zu Verschlusstechnologien die über das vergangene halbe Jahrhundert immer weiter verfeinert wurden – alles technische Finessen, die man entdecken kann. Dabei ist es als Modellbauer natürlich spannend auszuprobieren, ob sich diese feinmechanischen Konstruktionen nicht mit eignen Mitteln nachbauen lassen – natürlich unter strikter Einhaltung der Gesetze. Wenn man über den heimischen Tellerrand schaut, so bin ich mit diesem Hobby nicht alleine. Besonders in Japan gibt es eine größere Modellbau-Szene, die genau dies macht. In heimischen Werkstätten entstehen sogenannte Modelguns  – als nicht schussfähige Abbilder echter Waffen. Die Modellbauer setzen dabei von Pappe über Kunststoffe bis hin zu Aluminium und Messing eine ganze Bandbreite unterschiedlicher Materialien ein – die aber eines gemeinsam haben: Sie sind ungeeignet für den Bau von schussfähigen Waffen.

Vor einigen Jahren habe ich ebenfalls begonnen, mit kleineren Projekten vorbildgetreue Abbilder zu bauen. Mein STGW 42 Projekt mit unterschiedlichen Griffstücken habe ich hier ausführlich dokumentiert.

Seit dem ist viel Zeit ins Land gegangen. Über die vergangenen Monate ist bei mir dann die Idee gereift, einmal einen kompletten Nachbau anzugehen. Grundüberlegung war es, so viele Teile wie möglich zunächst als Druckobjekte herzustellen – um sowohl die Funktion als auch die Verwendbarkeit für ein Modell aus Aluminium und Messing zu prüfen.

Als Nachbau-Objekt wollte ich zunächst klein anfangen. Also entschied ich mich für ein Pistolen-Modell. Aber in Natura gibt es so viele Vorbilder. Aus meiner Sicht musste es also es etwas werden, was noch nicht so geläufig ist, um auch für spätere Betrachter interessant zu sein. Nach vielen Recherchen entschied ich mich für den Nachbau einer Welrod MK II Pistole. Das Ausschlaggebende war, dass sie wenig bekannt ist und von der Mechanik einige interessante Aspekte aufweist.

 

Es geht los

Nach einigen langen Abenden war klar, dass es zu der Pistole kaum technische Dokumentationen im Internet gibt. Dennoch konnte ich eine brauchbare Schnittzeichnung im Internet ausfindig machen. Solche eine Zeichnung war für mich eine gute Grundlage, um mit der CAD-Konstruktion der einzelnen Bauteile zu beginnen. Mehrere Wochen dauerte es, bis ich alle Teile am Rechner konstruiert hatte. Die virtuelle Montage der Einzelteile half, Maßunterschiede und Konstruktionsfehler beim Nachkonstruieren zu beheben.

Dann ging es an den Druck. Wieder brauchte es mehrere Wochen, um mit meinen beiden Druckern die einzelnen Modell-Teile aus PLA und ABS zu produzieren. Nach dem Druck wurde gefeilt und gebohrt, um die Druckteile zueinander passend zu bekommen, denn alle Teile waren nur mit geringen Toleranzen konstruiert. Die nötigen Toleranzen wollte ich in einem zweiten Schritt aus dem erstellten Prototypen-Modell ableiten, um dann die CAD-Konstruktion anzupassen und hinterher Pläne zu erstellen, damit ich die Teile aus Alu und Messing herstellen kann.

 

Hier mal ein Einblick in den derzeitigen Stand des Projekts:

 

Virtuell montiert: Das selbst konstruierte CAD-Modell.

Blick in das Innere: Dank CAD kann die Konstruktion virtuell geprüft werden.

Drehstück aus PLA.

Auch das Gehäuse ist aus PLA entstanden.

Der Auszieher ist aus PLA gedruckt.

Das Raststück ist aus ABS gedruckt.

Der Bolzen ist aus ABS gedruckt.

Bolzen und Halterast…

Die Abzuspalten aus ABS auf de Druckbett.

Stehend gedruckt: Der ABS-Verschluss.

Seitenansicht des aus ABS gedruckten Verschluss.

Verschluss von unten.

Das teilzerlegte Modell…

Voll zerlegte Modelgun aus Druckteilen (es fehlen noch einige Teile). Lediglich das Blech-Magazin ist aus einer alten japanischen Modelgun.

Draufsicht auf das montierte Modell von oben. Der Verschluss ist geschlossen.

Blick auf den Verschluss. Der gedruckte Auszieher und Bolzenkopf sind gut erkennen.

Der Verschluss ist offen. Zu erkennen ist die aus ABS gedruckte Dummy-Round.

 

Derzeit fehlen mir noch einige wenige Teile (Dämpferteilt, Abzug). Diese werde ich noch drucken. 

An dieser Stelle berichte ich dann hoffentlich bald wieder.

 

Horrido und stay tuned.

Heated Build Chamber für 3D-Drucker

Eigentlich funktionieren Drucke mit ABS und Polycarbonat in meinem Prusa I3, den ich in einem eigens dafür gebauten Gehäuse betreibe, gut. Aber so richtig große Teile aus ABS und PC habe ich bisher nicht gedruckt. Aus dem was ich bisher zu großen Druckobjekten und warping Effekten gelesen habe, haben mich dazu bewogen, das Gehäuse in eine Heated Build Chamber umzurüsten.

Idee

Idee der Umrüstung ist es, zur Beheizung einen Haartrockner zu nutzen, der über einen Temperaturcontroller die Wärme im Gehäuse reguliert. Der Haartrockner, der an der Rückseite des Gehäuses montiert sein soll, bläst dabei warme Luft nach innen. Um die Luft gleichmäßig zu verteilen, wird der Luftstrom mittels einer Art Prallplatte beim Eintritt in das Druckergehäuse verteilt.

Material

Für das Upgrade des Gehäuses beschaffte ich mir einen 2300W Haartrockner, eine 230V Temperatursteuerung und konstruierte eine Halterung und die besagte Prallplatte und druckte beide Teile aus ABS.

Die Einzelteile: 2300W Haartrockner, gedruckte Montagehalterung mit Parkplatz und 230V Temperatursteuergerät.

Umsetzung

In die Wartungsklappe des Druckergehäuses bohrte ich mittels Lochsäge ein entsprechend dimensioniertes Loch. Daran befestigte ich die Haartrockner-Halterung inkl. der Prallplatte. Das Temperatursteuerungsgerät montierte ich auf die Gehäuseoberseite, nachdem ich auch dafür eine passende Halterung konstruiert und gedruckt hatte.

Mit einer Lochsäge wir das nötige Loch in die Wartungsklappe eingebracht.

Die sogenannte Prallplatte wird aus ABS gedruckt.

An die Haartrockner-Montagehalterung (links) ist eine Prallplatte (rechts) montiert, um die einströmende Luft im Druckraum zu verteilen.

Die Prallplatte verteilt die einströmende Luft gleichmäßig.

Die aus ABS gedruckte Haartrockner-Halterung ist an die Wartungsklappe montiert.

Innenansicht: Blick auf die Rückseite der Prallplatte (graues Teil im Hintergrund).

Der Haartrockner ist an seinem Arbeitsplatz.

Testbetrieb

Der erste Testlauf lief eigentlich problemlos. Die eingestellte Temperatur von 48°C wird gehalten. Allerdings sitzt die Plexiglasscheibe durch den Luftstrom im Heizbetrieb nicht richtig gut in der Halterung. Daher muss ich mir wohl eine schwerere Tür aus Holz mit kleinem Sichtfenster und Luftdruckventil bauen.

Der 230V Temeperaturcontroller bei der Arbeit. Die Soll-Temepratur ist auf 48°C eingestellt. Fällt die Temperatur unter 46°C, wird der Haartrockner durch die Steuerung angeschaltet und bei erreichen der Soll-Temperatur wieder abgeschaltet.

Die Druckkammer ist jetzt über 45 °C warm.

Ein Test mit laufendem Drucker bei einer dauerhaften Zieltemperatur von 50°C  ist nun der nächste Schritt.

 

Soweit aus der Bastelkammer

Stay tuned und horrido…

Selbstgebauter Einbauschrank

FERTIG! Es fehlen nur noch die Türknäufe...

Ausreichend Stauraum ist nicht zu unterschätzen. Da ist es doch schön, wenn man eigentlich nicht wirklich nutzbaren Raum, z.B. unter einer Dachschräge mit einem Einbauschrank füllen kann.

Auf einer Gesamtlänge von knapp sieben Metern unterhalb einer Dachschräge sollte ein Einbauschrank daheim entstehen. Anforderung: Über zwei Ebenen sollten DIN A4 Aktenordner untergebracht werden können. Zudem sollte die Schrankfläche durch Türen den Inhalt unsichtbar machen.

Rein konstruktiv musste der etwas unebenen Dachschräge Rechnung getragen werden. D.h. über die Länge musste der Einbauschrank in gewissen Grenzen veränderbar sein, um eine möglichst gute Anpassung hinzubekommen. Darum entschied ich mich für eine Art Modulbauweise aus einem einheitlichen Korpus mit gleichbleibender Breite. Lediglich das letzte Schrankelement wurde mit individueller Breite offen gebaut – dort finden die Drucker ihre Heimat.

Zunächst baute ich eine Schmiege aus Holz, um die Dachschräge an unterschiedlichen Stellen abzunehmen und ein einheitlich verwendbares Schrägmaß zu finden. Anschließend ging es an die Konstruktion des Korpus. Das Schrankelement ist aus beschichteter 19mm Spanplatte hergestellt. Die 35mm-Topscharniere und Trapezverbinder sind aus dem Baumarkt. Die Plattenelemente sind mittels 4x50mm Senkkopfschrauben fest miteinander verschraubt.

3D-Modell des Schranks: Vier Teile sind nötig - und zwei Türblätter.

3D-Modell des Schranks

3D-Modell mit Türen.

3D-Modell mit Türen.

3D-Modell wird bemaßt...

3D-Modell wird bemaßt…

Nach Fertigstellung der Konstruktion schloss sich der Bau eines Prototypen an, um im Vorwege unnötige Kosten zu vermeiden.

Anforderung: DIN A-4-Ordner müssen auf beiden Ebenen untergebracht werden können.

Anforderung: DIN A-4-Ordner müssen auf beiden Ebenen untergebracht werden können.

Prototyp ist fertig.

Prototyp ist fertig.

Sieht schon einmal gut aus: Prototyp an Ort und Stelle.

Sieht schon einmal gut aus: Prototyp an Ort und Stelle.

Da der Prototyp passte, bestellte ich anschließend beim Holzhändler für den Bau der übrigen Elemente Holzplatten in den passenden Maßen. Umleimer ließ ich gleich vom Händler an den entsprechenden Kanten der beschichteten Span-Platten anbringen.

Knapp 250 kg Spanplatte wird vom Holzhänder abgeholt...

Knapp 250 kg Spanplatte wird vom Holzhänder abgeholt…

An einem Samstag ging dann die Serienfertigung der Teile los: Zusägen der Seitenplatten, Topfsenkungen in alle Türblätter bringen. An den beiden folgenden Tagen montierte ich die Schrankelemente vor Ort sukzessive zusammen. Es folgte Ausrichtung der Element zueinander, Montage der Türen und letztlich Sichtkante mit Acryl-Masse füllen.

Schrägen werden zugesägt.

Schrägen werden zugesägt.

Topfschaniersenkungen werden mit einer Vorrichtung gebohrt.

Topfschaniersenkungen werden mit einer Vorrichtung gebohrt.

Nützliches Hilfsmittel: Senkvorrichtung für Topfschanier-Bohrung.

Nützliches Hilfsmittel: Senkvorrichtung für Topfschanier-Bohrung.

Die Schrankelemente werden vor Ort zusammengebaut.

Die Schrankelemente werden vor Ort zusammengebaut.

Der Einbauschrank nimmt Formen an...

Der Einbauschrank nimmt Formen an…

Eingereiht: Die einzelnen Elemente sind an Ihrem zukünftigen Platz.

Eingereiht: Die einzelnen Elemente sind an Ihrem zukünftigen Platz.

Ausgerichtet und nun verbinden der Elemente untereinander.

Ausgerichtet und nun verbinden der Elemente untereinander.

Topfscharnier wird fest verschraubt.

Topfscharnier wird fest verschraubt.

Das offen gestaltete Schrankelement ist schmaler. Es bietet den beiden Drucker genug Platz.

FERTIG! Es fehlen nur noch die Türknäufe...

FERTIG! Es fehlen nur noch die Türknaufe…

Update vom 11.3.17:

Mittlerweile sind diese Türknäufe allesamt angebracht…

Türknäufe aus Steingut/Keramik.

 

Schrank mit den montierten Knäufen.

 

Horrido und stay tuned.

Honda CB 50J Restaurierung: Zerlegen, Reinigen, Aufarbeiten u. Zusammenbau

Die Räder sind montiert.

Der Rahmen mit Anbauteilen war beim Sandstrahler und ist von dort direkt zum Lackierer weiter, um erneuten Rostbefall gleich auszuschließen.

Gesammelte Teile: Diese gehen zum Strahlen und anschließend zum Lackierer.

Gesammelte Teile: Diese gehen zum Strahlen und anschließend zum Lackierer.

Der Rahmen kommt vom Sandstrahler - es geht gleich weiter zum Lackierer.

Der Rahmen kommt vom Sandstrahler – es geht gleich weiter zum Lackierer.

Teile sind vom Sandstrahlen zurück...

Teile sind vom Sandstrahlen zurück…

Der Lackierer hat den Rahmen zügig in glänzendes Schwarz gehüllt.

Rahmenteile sind vom Lackierer zurück.

Rahmenteile sind vom Lackierer zurück.

Daraufhin ging es mit dem Zusammenbau der Maschine auch los.

Der Rahmen wird wieder zusammengebaut...

Der Rahmen wird wieder zusammengebaut…

Der Motor ist für den Einbau in den Rahmen vorbereitet.

Der Motor ist für den Einbau in den Rahmen vorbereitet.

Der Motor ist wieder drin...

Der Motor ist wieder drin…

Vorbereitung der Gabelmontage...

Vorbereitung der Gabelmontage…

Kleiner Trick: Um die Kugellagerrollen am wegrollen zu hindern hilft ein Kabelbinder und reichlich Lagerfett.

Kleiner Trick: Um die Kugellagerrollen am wegrollen zu hindern hilft ein Kabelbinder und reichlich Lagerfett.

Der Gabelkopf ist montiert.

Der Gabelkopf ist montiert.

Teilmontierter Rahmen.

Teilmontierter Rahmen.

Die Räder sind montiert.

Die Räder sind montiert.

Vorher habe ich aber die oberen Federbeine entrostet und mit der Maschine poliert. Um erneute Flugrostbildung zu verhindern habe ich eine Flüssigwachsversiegelung aufgetragen.

Die unteren Bereich der Federbeine habe ich gereinigt (mit Kaltreiniger und Silikonentferner) und mit der Lack aus der Dose die Farbschicht aufgefrischt.

Gabelteile: Vorbereiten der Lackierarbeit.

Gabelteile: Vorbereiten der Lackierarbeit.

Lackierte Gabelteile.

Lackierte Gabelteile.

 

Bei den Rädern galt es den Rost zu entfernen. Mit Cola und Alufolie habe ich das Vorderrad (Felgenring und Speichen) bearbeitet – das ging erstaunlich gut. Ich habe aber anschließend noch mit Schleiffließ am Felgenring nachgearbeitet. Bei den Speichen bin ich gleich mit Schleifpapier bzw. Topfbürste auf der Bohrmaschine angerückt.

Auch die Felgen habe ich anschließend mit Flüssigwachs versiegelt.

Beiden Rädern habe ich passende neuen Pneus gegönnt – die sehen schnittiger aus als die vorher montierten Gummis.

Die Felgen sind entrostet und poliert und bekommen neue Pneus.

Die Felgen sind entrostet und poliert und bekommen neue Pneus.

 

Da die Honda ja zu einem Cafe Racer werden soll, habe ich auch den Originallenker gegen einen M-Lenker getauscht. Nach der Probemontage habe ich zunächst die passende Lenkereinstellung gesucht, um dann die Halterbohrungen für die Hebelmontage zu setzen. An der Standbohrmaschine bohrte ich dann die entsprechenden Löcher ab.

Bevor die Hebel am Lenker montiert wurden, habe ich diese gereinigt und poliert. Die Kabel, die an den Hebelhalterungen befestigt waren, musste ich entsprechende Aussparungen anbringen, da im neuen Lenker die Kabel, bedingt durch die Bauform, nicht mehr geführt werden können.

Umbau des Lenken ist aufwändig...

Umbau des Lenken ist aufwändig…

Neuer Lenker: Abbohren der Halterasten für die Hebelhalter.

Neuer Lenker: Abbohren der Halterasten für die Hebelhalter.

Hebelhalterung bekommt einen Kabeldurchlass.

Hebelhalterung bekommt einen Kabeldurchlass.

 

Am Auspuff, dessen Endstück Rost bereithielt – ging es mit Schleifpapier, Fertan an den Leib. Hinterher kamen zwei Schichten Hochtemperatur-Lack drüber.

Auspuffendstück: Rostwandler Fortan arbeitet...

Auspuffendstück: Rostwandler Fortan arbeitet…

Lackieren des Auspuffendstücks.

Lackieren des Auspuffendstücks.

Auspuffendstück ist lackiert.

Auspuffendstück ist lackiert.

Für das obligatorische kurze Vorderschutzblech fertigte ich die nötigen Halterungen selbst. Dazu musste ich zunächst eine CAD-Konstruktion anfertigen, um anschließend eine Schnittvorlage für die Blecharbeit zu haben.

Die Blecharbeit kostete viel Zeit, aber lohnte sich.

Nun sitzt auch das neue Schutzblech an seinem angedachten Platz.

Vom Entwurf zur Schablone... CAD-Arbeit liegt dazwischen.

Vom Entwurf zur Schablone… CAD-Arbeit liegt dazwischen.

CAD-Modell des linken Schutzblechhalters.

CAD-Modell des linken Schutzblechhalters.

CAD-Modell des entworfenen rechten Schutzblechhalters.

CAD-Modell des entworfenen rechten Schutzblechhalters.

Schutzblechhalterungen: Schablonen auf Alu-Blech geklebt.

Schutzblechhalterungen: Schablonen auf Alu-Blech geklebt.

Körnungen setzen...

Körnungen setzen…

Anfertigen der Kotflügelhalterung ist Handarbeit am Blech...

Anfertigen der Kotflügelhalterung ist Handarbeit am Blech…

Halterung aus 1,5mm Alu-Blech angefertigt.

Halterung aus 1,5mm Alu-Blech angefertigt.

Anprobe der Halterungen an der Gabel.

Anprobe der Halterungen an der Gabel.

Fertig: Schutzblech mit allen Bohrungen und den neuen Halterungen.

Fertig: Schutzblech mit allen Bohrungen und den neuen Halterungen.

Was fürs Auge... Schutzblech sitzt.

Was fürs Auge… Schutzblech sitzt.

Nun geht es an die Höckersitzbank, denn es gilt schließlich noch eine passende Halterung zu entwerfen und zu bauen. Erst dann kommt der Tank (Beule spachteln) und die Lackierung der Bank, Seitenteile und des Tanks.

Es ist also noch etwas Arbeit zu tun…;-)

Vintage Kyosho RC-Cars: Ersatzteile selbst anfertigen

 

Montiert: Die neue Ersatzantriebswelle is einsatzbereit.

Eingebaut: Motor ist im Kyosho Turbo Optima montiert. Die blaue Distanzplatte ist gut zu erkennen.

Für zwei Kyosho Buggies benötige ich Ersatzteile – ein Teil ist beim Fahren gebrochen und ein anderes Teil ist nicht mehr vorhanden und nicht beschaffbar. Daher habe ich mich kurzerhand entschlossen, beide Teile anzufertigen – doch der Reihe nach.

 

Kyosho Raider Antriebswelle

Für den erst kürzlich für meinen Sohn gebraucht gekauften Kyosho Raider, der vom Vorbesitzer offensichtlich nie gefahren wurde, benötige ich eine neue Antriebswelle, denn eine der Wellen ist gleich bei der ersten Fahrt gebrochen. Die im 2WD-Buggy verbauten Wellen sind eine Mischkonstruktion aus Kunststoff und Metall – die Kugelgelenkköpfe mit einem kurzen Wellenschenkel bestehen aus Metall, der Mittelteil hingegen ist in Kunststoff gestaltet. Genau an diesem Kunststoffmittelteil ist die Antriebswelle gebrochen. Leider ist ein entsprechendes Originalersatzteil nicht zu bekommen. Daher habe ich mir eine Ersatz-Konstruktion überlegt, bei der ich die Metallteile wiederverwenden kann und lediglich den Mittelteil neu anfertigen muss.

Der Mittelteil wird aus PLA mit einem Infill von 100% gedruckt. Die Metallteile sollen im PLA-Mittelteil sowohl kraft- als auch formschlüssig verbunden sein. Um Formschluss zu erreichen habe ich an beiden Metallwellenenden entsprechende Flächen gefräst, um den Formschluss und damit eine einwandfreie Kraftübertragung zu gewährleisten. Um einen Materialbruch des PLA-Teils zu vermeiden wird das Bauteil beim Druck horizontal ausgerichtet hergestellt – so sind die Layer parallel zur Drehachse ausgerichtet, was ein Scherbruch verhindern soll. Die Konstruktion sieht folgendermaßen aus:

 

Die gebrochene Antriebswelle des Kyosho Raider. Gut zu erkennen: Der Kunststoffmittelteil ist hin.

Die gebrochene Antriebswelle des Kyosho Raider. Gut zu erkennen: Der Kunststoffmittelteil ist hin.

Anfertigung der ersten Skizze für das Ersatzteil der Antriebswelle.

Anfertigung der ersten Skizze für das Ersatzteil der Antriebswelle.

Die beiden Metall-Teile der Antriebswelle.

Die beiden Metall-Teile der Antriebswelle.

An den enden der Antriebswellen-Teile werden jeweils eine Abschlagsfläche angefärbt, um eine formschschlüssige Verbindung ausbilden zu können.

An den enden der Antriebswellen-Teile werden jeweils eine Abschlagsfläche angefärbt, um eine formschschlüssige Verbindung ausbilden zu können.

Die angefrästen Anlageflächen.

Die angefrästen Anlageflächen.

CAD-Modell des konstruierten Mittelteils für die Antriebswelle. Die beiden Metall-Teile haben einen Abstand von 20mm.

CAD-Modell des konstruierten Mittelteils für die Antriebswelle. Die beiden Metall-Teile haben einen Abstand von 20mm.

Das STL-Modell in Cura.

Das STL-Modell in Cura.

Slicing des Mittelteils für die Antriebswelle. Der Grundköper ist nun viereckig, da die runde Variante nicht druckbar war.

Slicing des Mittelteils für die Antriebswelle. Der Grundköper ist nun viereckig, da die runde Variante nicht druckbar war.

Fertig montiert: Die neue Antriebswelle ist fertig und die Abmessung passt. Die Metallteile sind zusätzlich noch mit Sekundenkleber gesichert.

Fertig montiert: Die neue Antriebswelle ist fertig und die Abmessung passt. Die Metallteile sind zusätzlich noch mit Sekundenkleber gesichert.

Montiert: Die neue Ersatzantriebswelle is einsatzbereit.

Montiert: Die neue Ersatzantriebswelle is einsatzbereit.

Eine erste Testfahrt werde ich nun mal wagen.

 

 

Kyosho Turbo Optima Motor Distance Plate

Bei diesem Relikt und Legende unter den 4WD Buggies, der mir in einem guten Gesamtzustand in die Hände viel, fehlt leider die sogenannte Motor Distance Plate. Auch für dieses Car habe ich bisher kein passendes Ersatzteil finden können. Also habe ich mir vorgenommen, ein entsprechendes Ersatzteil selbst herzustellen. Da mir kein Originalteil zum Vermessen zur Verfügung steht, habe ich zunächst die Grundabmessungen vom vorhandenen Kyosho Le Mans 204 SB-Motor abgenommen. Die Kontur der Motor Distance Plate habe ich im Internet aus einem Foto rekonstruiert. Am Rechner entstand dann das folgende CAD-Modell.

Da ich kein 2mm starkes AL-Blech vorrätig habe, werde ich die Platte zunächst aus PLA drucken. Sollte diese Variante etwas taugen lasse ich es zunächst einmal dabei. Ansonsten muss ich passendes Aluminium-Blech beschaffen und an der CNC-Fräse das Distanzblech fräsen…

Ein Foto aus dem Internet dient als Vorlage der CAD-Konstruktion. Referenz-Maße sind vom Motor abgenommen.

Ein Foto aus dem Internet dient als Vorlage der CAD-Konstruktion. Referenz-Maße sind vom Motor abgenommen.

Die Kontur ist nachkonstruiert (grün).

Die Kontur ist nachkonstruiert (grün).

CAD-Modell ist fertig.

CAD-Modell ist fertig.

STL-Modell der Distanzplatte im Slicer Cura.

STL-Modell der Distanzplatte im Slicer Cura.

Die Distanzplatte ist 2mm stark. Sie besteht aus PLA mit 100% Infill.

Die Distanzplatte ist 2mm stark. Sie besteht aus PLA mit 100% Infill.

Zusammen: Die Teile für den Antrieb -  neues Zahnritze, Le Mans-Motor und gedruckte Distanzplatte.

Zusammen: Die Teile für den Antrieb – neues Zahnritzel, Le Mans-Motor und gedruckte Distanzplatte.

Die gedruckte Distanzplatte passt.

Die gedruckte Distanzplatte passt.

Eingebaut: Motor ist im Kyosho Turbo Optima montiert. Die blaue Distanzplatte ist gut zu erkennen.

Eingebaut: Motor ist im Kyosho Turbo Optima montiert. Die blaue Distanzplatte ist gut zu erkennen.

Jetzt bekommt der Turbo Optima noch einen neuen Fahrtenregler und einen Empfänger, dann kann auch der Wagen auf die Piste. Anschließend werde ich ihn aber komplett zerlegen und die Einzelteile reinigen und ggf. reparieren.

 

Soweit für heute.

Horrido und stay tuned.

 

Instandsetzung eines Tamiya Williams Renault auf F103RS Chassis

Gebraucht: Ein Tamiya Williams Renault auf F103RS-Chassis.

Gebraucht: Ein Tamiya Williams Renault auf F103RS-Chassis.

 

Neben dem Restaurierungsprojekt des Tamiya Hilux hat sich ein Tamyia F103RS-Chassis mit Williams Renault FW 18 Body in die Bastelkammer geschlichen. Das Modell habe ich sehr günstig gebraucht erworben – doch es fehlten der Motor, der Fahrtenregler und die Akku-Seiten-Halterungen (Teil D10). Ansonsten macht das Fahrzeug einen sehr ordentlichen Eindruck, so dass ich es zunächst bei der Nachrüstung mit den fehlenden Teilen belassen werde.

Als Motor beschaffte ich einen Standard Mabuchi RS540HS und einen elektronischen Tamiya-Fahrtenregler TEU-105BK. Die fehlenden Akku-Halterungen (D10) kann man nur als ganze Baugruppe (D) nachbestellen und diese kostet unverhältnismäßig viel. Daher habe ich mich hingesetzt und das Teil nachkonstruiert und es zweimal am Drucker ausgedruckt – in PLA, mit 50 Prozent Infill (für ausreichende Festigkeit).

Da ich noch einen bisher ungenutzen 2S-Lipo habe, wird dieser im F1-Flitzer zukünftig die Energie liefern. Um den Akku etwas robuster zu machen, bekommt er auf der Ober- und Unterseite eine Verstärkung aus 2mm GfK-Platten, die dann mittels Struktur-Tape am Lipo befestigt werden. So ist der Lipo hoffentlich ausreichend mechanisch geschützt.

 

Hier mal einige Bilder dazu von der Werkbank:

Nackt: Bis auf den Lenkservos fehlt die Elektronik...

Nackt: Bis auf den Lenkservos fehlt die Elektronik…

Ausrüsten: Motor, Fahrtenregler und Empfänger...

Ausrüsten: Motor, Fahrtenregler und Empfänger…

Ein 2S-Lipo soll dem Flitzer Energie liefern.

Ein 2S-Lipo soll dem Flitzer Energie liefern.

Neuer Mabuchi RS540HS Motor ist montiert.

Neuer Mabuchi RS540HS Motor ist montiert.

Ausgestattet: Motor und Fahrtenregler sind an Ort und Stelle.

Ausgestattet: Motor und Fahrtenregler sind an Ort und Stelle.

CAD-Modell des fehlenden Akkuhalter-Teils. Dieses Teil fehlt auf beiden Seiten am Fahrzeug. Da es auf beiden Seite identisch ist, braucht es auch nur ein Modell. Das Nachbauteil ist aus drei Komponenten konzipiert. Kunststoff-Druckteil (blau) und zwei Metall-Zapfen (gold) die in das Kunststoffteil geklebt werden. Die Zapfen werde ich entweder aus Messing oder Aluminium-Rundmaterial fertigen.

CAD-Modell des fehlenden Akkuhalter-Teils. Es fehlt auf beiden Seiten am Fahrzeug. Da es auf beiden Seite identisch ist, braucht es auch nur ein Modell. Das Nachbauteil ist aus drei Komponenten konzipiert. Kunststoff-Druckteil (blau) und zwei Zapfen aus Polyamid-Rund-Profilen (gold) die in das Kunststoffteil geklebt werden.

CAD-Modell des Kunstoffteils.

CAD-Modell des Kunstoffteils.

Druck der Halterung.

Druck der Halterung.

In PLA gedruckt: Das Akku-Halterungsersatzteil.

In PLA gedruckt: Das Akku-Halterungsersatzteil.

Filament des Druckers ist aufgebraucht...

Filament des Druckers ist aufgebraucht…

Das 2. Teil ist gedruckt.

Das 2. Teil ist gedruckt.

Die Abemssungen passen... Es fehlen noch die Haltezapfen.

Die Abemssungen passen… Es fehlen noch die Haltezapfen.

Anprobe des gedruckten Teils mit Lipo.

Anprobe des gedruckten Teils mit Lipo.

Die Kunststoffteile (PLA) der Halterungen sind gedruckt. Nach dem Filamentwechsel ist die 2. Halterung in blau gedruckt

Die Kunststoffteile (PLA) der Halterungen sind gedruckt. Nach dem Filamentwechsel ist die 2. Halterung in blau gedruckt. Noch fehlen die 5mm Polyamid-Rundprofile.

Update 6.5.2015:

Die Halterungen sind fertig und der Akku passt…

Fertig: Gedruckter Batteriehalter aus PLA mit PLA-Zapfen aus Rundmaterial. Die Zapfen sind per Presspassung gefügt und zusätzlich mit Sekundenkleber gesichert.

Fertig: Gedruckter Batteriehalter aus PLA mit PLA-Zapfen aus Rundmaterial. Die Zapfen sind per Presspassung gefügt und zusätzlich mit Sekundenkleber gesichert.

Die Akkuhalterung sitzt gut.

Die Akkuhalterung sitzt gut.

Passgenau: Das Akku-Fach ist nun wieder komplett - und etwas bunter.

Passgenau: Das Akku-Fach ist nun wieder komplett – und etwas bunter.

Sitzt: Lipo im Fach...

Sitzt: Lipo im Fach…

Der 2S-Lipo ist auf der Unterseite mit einem 2mm-GfK-Brett verstärkt.

Der 2S-Lipo ist auf der Unterseite mit einem 2mm-GfK-Brett verstärkt.

Wer den Akkuhalter nachdrucken möchte, für den habe ich die STL-Daten hier eingestellt.

 

Nun gehts die Tage auf die Glatt-Bahn mit dem Flitzer…

 

Horrido und stay tuned.