Anycubic 4Max: DIY-Abdeckhaube hält die Wärme für den ABS-Druck

Seit einiger Zeit werkelt in meiner Bastelkammer der neue Anycubic 4Max, ein Ultimaker-Clone, der als Bausatz für knapp 300 Euro auf den deutschen Markt gekommen ist. Hier gibt es kurzes Video vom Hersteller zum Drucker.

PLA konnte ich mit dem Drucker bisher ohne Probleme und sehr zufriedenstellend drucken. Doch leider war der Druck von ABS-Teile nicht von Erfolg gekrönt. Die Teile verzogen sich stark (Warping). Hauptursache ist aus meiner Beobachtung heraus, die große Öffnung an der Oberseite des Drucker, die dazu führt, dass die im Druckraum durch Heizbett und Hotend entstehenden Wärme an die den Drucker umgebende Raumluft abgegeben wird.

Um die Wärme im Druckraum zu halten und so ein Warping zu vermeiden, müssen die Öffnungen am 4Max geschlossen werden.  Bei thingiverse bin ich glücklicherweise für das Verschließen der Grifföffnungen fündig geworden. Dort ist dieses Snap-In-Teil zu finden. Zwei aus PLA gedruckte Teile waren schnell angefertigt.

Die Griffabdeckungen gibt es bei thingiverse zum download. Ich habe diese Teile ebenfalls aus PLA gedruckt.

Etwas aufwändiger ist die Abdeckung auf der Oberseite, denn sie muss aus meiner Sicht vier Dinge erfüllen:

  1. Lichtdurchlässig sein, um genügend Licht im Inneren des Druckers zu haben.
  2. Von der Höhe so ausgelegt sein, dass große Druckteile in der vom Werk eingestellten Endposition des Druckbetts (oben) nicht mit der Abdeckung kollidieren.
  3. So ausgelegt sein, dass sich der Kabel- und Filament-Versorgungstrang hindernisfrei bewegen kann.
  4. Die Abdeckhaube muss leicht abnehmbar sein, um das Filament am Extruder wechseln zu können.

Mit diesem kleinen Pflichtenheft habe ich mich daran gemacht, ein entsprechende Abdeckhaube zu konstruieren und zu bauen.

CAD-Modell der Abdeckhaube für den Anycubic 4Max.

Meine Konstruktion besteht aus fünf Plexiglas-Platte mit einer Stärke von 5 Millimetern. Für den seitlichen Durchbruch in der Haube, durch die der Versorgungsstrang zum Druckkopf verläuft, habe ich einen passenden Kantenschutz entworfen. Der Kantenschutz ist an der Ober – und Unterseite so konstruiert, dass er 11 Millimeter hohe Steigner Bürstendichtungen aufnimmt, um den Durchbruch flexibel zu verschließen, damit so wenig Wärme wir möglich entweichen kann.

Beim ersten Druck, bei dem ein Bauteil mit knapp 5h Fertigungszeit entstand, habe ich die Temperatur im Inneren des Druckers auf Höhe des Durchbruchs in der Abdeckhaube gemessen. Dort liegt die Temperatur nach ca. 2,5h Druckzeit bei 38 ° Celsius (Druckeinstellung: Druckbett 80°C, Hotend 235°C; Raumtemperatur in dem der Drucker steht liegt bei 21°). Die Temperatur wird innerhalb des Druckers sicherlich in Richtung Druckbett höher liegen – insofern macht die Abdeckhaube das was sie soll: Sie hält die warme Umgebungstemperatur, die beim ABS-Druck nötig ist, im Inneren.

Um die Effizienz und damit die Haftungsfähigkeit von ABS-Druckteilen auf dem Druckbett zu erhöhen, habe ich das Heizelement unter dem Druckbett von der Unterseite mit einer Aluminium-kaschierten Keramikfaser-Matte (Abmessungen 218x218x10) isoliert. Dadurch wird die Wärme des Heizbetts nicht nach unten sondern nach oben zum Druckbett abgegeben. Ein 3,5 Stunden dauernder Testdruck (0,2mm Layerhöhe, 235 °C Hotend, 95° C Heatbed, 30 Prozent Infill) eines Motorblockmodells (auf 30% in der Größe verkleinert) mit Verbatim ABS verlief problemlos – es zeigte sich kein Warping oder eine Ablösung vom Heatbed.

Aus ABS gedrucktes „Testobjekt“ – 0,2mm Lagerhöhe, 30 % Infill.

Ein Drucktest eines weiteren „Testteils“ (Schrittmotor-Motorhalterung) aus ABS mit einem Infill von 75 Prozent klappte leider nicht. Denn das Druckteil löste sich bereits nach knapp einer Stunden vom Druckbett. Dieses Ergebnis legt den Schluss nahe, dass die inneren Spannungen im ABS-Bauteil während des Abkühlens erheblich größer sind, wenn der Infill hoch ist. Die Anycubic Ultrabase-Folie bringt trotz knapp 100 °C Heizbetttemperatur in solch einem Fall nicht ausreichend Haltekraft auf, um Warping und das anschließende Ablösen vom Druckbett zu verhindern.

Ein Vergleich mit meinem Prusa i3, bei dem ich auf einem beheizten Glasdruckbett mit ABS-Slurry als Haftvermittler ABS drucke, zeigt hingegen keine Haftungs- oder Warping-Probleme – selbst bei 100 Prozent Infill!

Mein Fazit dazu

ABS auf dem Anycubic 4 Max zu drucken ist möglich, aber mit der Anycubic Ultrabase-Beschichtung auf dem Druckbett ist das nur zuverlässig bis rund 30 Prozent Infill möglich. Eine Lösung kann sein, das Ultrabase zu entfernen und auf einer glatten Glasplatte mit ABS-Slurry zu drucken. Eine Andere ist, sich beim 4 Max auf ABS-Drucke mit maximal 30 Prozent Infill zu beschränken.

 

Folgend nun einige Bilder, die dieses Mod-Projekt zeigen:

Mit einer Laubsäge wird der Durchbruch in der Acrylglas-Platte angefertigt.

Die Öffnung für den Versorgungsrang ist fertig montiert. Gut zu erkennen sind die beiden Bürstendichtungen.

Die Acrylglac-Platten werden mit Plastikkleber von Uhu verklebt.

Die Öffnung an der rechten Seite der Abdeckhaube.

Fertig gebaute Abdeckhaube.

Die Eckhalter sind aus PLA gedruckt.

Mit Kleber sind die Eckhalter auf die obere Gehäuseplatte des 4Max geklebt.

Die Abdeckhaube ist auf dem 4Max aufgesetzt – es kann gedruckt werden.

Durch abkippen der Haube kommt man gut von oben an den Druckbereich und den Extruder heran.

Eine zugeschnittene Aluminium-kaschierte Keramikfließmatte isoliert das Heatbed nach unten.

Die unkaschierte Seite der Hitzeschutzmatte.

Die Matte passt ohne Probleme zwischen Heatbed und Z-Achsen-Trägerplatte – es muss noch nicht einmal Kleber verwendet werden.

 

Wer die Abdeckhaube nachbauen möchte, der findet bei thingiverse die entsprechenden Files.

 

Horrido und stay tuned.

Advertisements

Wanhao Duplicator 7: 3D-Druck mit Licht

In der Bastelkammer kommen in der Mehrheit die sehr verbreiteten FDM-Drucker zum Einsatz, bei denen ein Kunststofffilament aufgeschmolzen wird. Doch zuweilen reicht deren Detailierungsgrad von Teilen nicht aus. Entsprechende Druckverfahren, die eine höhere Detailierung und feinere Teile ermöglichen, waren bis vor einiger Zeit nur bei professionellen Druckservice-Anbietern im Einsatz. Doch mittlerweile gibt es für ambitionierte Privatanwender einen vielversprechenden 3D-Drucker mit einem guten Preis-Leistungsverhältnis. Mit dem Wanhao Duplicator 7-Drucker entstehen die Teile aus flüssigem Kunstharz.

 

Der Wanhao Duplicator 7 (D7) arbeitet nach dem Stereolithografie-3D-Druck-Verfahren. Es kann im Gegensatz zu FDM-Verfahren mit einer sehr feinen Auflösung und für das bloße Auge kaum sichtbaren Layer-Stufen die Limitierungen des FDM-Verfahrens umschiffen. Das Ergebnis sind dann Druckobjekte mit ebener Oberfläche, die zudem auch noch sehr klein bzw. filigran sein können. Ideal für die Erstellung von Urmodellen die abgegossen werden sollen oder sichtbaren Teilen, die direkt am Modell zum Einsatz kommen.

Blick auf den D7 mit der oben hängend montierten Druckplatte und der Warmwanne (unten) die auf dem LCD-Screen mit zwei Handmuttern befestigt wird.

Der Wanhao Duplicator 7 mit aufgesetztem Lichtschutz.

Das zentrales Element des Druckers ist sein 5,5 Zoll LCD-Display, welches im Stahlblechgehäuse zusammen mit dem Controllerboard, Schrittmotor für die Z-Achse und Netzteil verbaut ist. Auf das Display wird eine Harzwanne montiert, deren Unterseite mit einer teflonbeschichteten FEP-Klarsichtfolie abgeschlossen ist. Die Druckplatte hängt kopfüber an dem Befestigungsarm, welcher mittels Schrittmotor durch eine Gewindestange hoch- und runterbewegt wird. Damit wird schon klar, dass die Druckobjekte kopfüber entstehen, denn die Druckplatte taucht beim Druck in die mit UV-empfindlichen Harz gefüllte Harzwanne von oben kommend ein und wandert dann bei fortschreitendem Druck Schicht für Schicht wieder hoch. Der unter der Harzwanne befindliche LCD-Screen belichtet das Resin und es härtet an der entsprechenden Stelle den jeweiligen Layer aus.

Um das lichtempfindliche Harz während des Drucks vom Umgebungslicht abzuschirmen, wird ein großer schwarzer Stahlblech-Lichtschutzdeckel während des Drucks auf den Drucker aufgesetzt.

Die Druckdaten und Layer-Bildinformationen werden über einen notwendigen externen Rechner via USB- und HDMI-Port an den Drucker übermittelt. Dieses Setting macht deutlich, dass ein Computer jeweils einen USB- und HDMI-Ausgang benötigt und permanent an den Drucker angeschlossen sein muss, um drucken zu können.

Findigen Tüftlern war aber genau dieses Computer-Drucker-Setting des Wanhao D7, welches eben keinen Stand-alone-Betrieb ermöglicht, ein Dorn im Auge. Denn wer möchte schon seinen Computer über Stunden an den Drucker binden, solange dieser druckt. Und was machen Modellbauer wie ich, die zwar einen Rechner dafür entbehren könnten, aber der Laptop blöderweise nicht über einen HDMI-Port verfügt.

Glücklicherweise gib es eine sehr einfache und verhältnismäßig kostengünstige Lösung, um den Wanhao D7 Stand-alone-fähig zu machen, sie heißt NanoDLP. Dabei handelt es sich um eine kostenlose Host- und Controll-Software, die auf einen Raspberry PI mit WLAN installiert wird und sich über den Webbrowser von jedem Rechner mit WLAN-Anbindung im heimischen Netz nutzen lässt. NanoDLP ist für DLP-Drucker was Octoprint für FDM-Drucker ist. Aus den o.g. Gründen betreibe ich den D7 mit NanoDLP. Wie NanoDLP konfiguriert wird ist hier wirklich gut erläutert.

Der D7 wird über einen RPi 3 (rechts im Bild) mit NanoDLP im Stand-alone-Betrieb genutzt.

Vor und nach jedem Druck ist eine obligatorische Reinigung von Harzwanne und Druckplatte mit Spiritus oder Isopropanol notwendig, um Staub, Schmutz oder Harz-Rückstände zu entfernen.

Um mein Welrod MKII-Modellbauprojekt voranzutreiben, habe ich mir als Druckobjekt ein konstruiertes Welrod-Kleinteil (Fanghebel) ausgewählt, welches ich später evtl. als Zink-Gußteil herstellen möchte. Für diesen Herstellungsprozess wird zunächst ein genaues Ur-Modell gebraucht – genau dafür ist das Druckverfahren des D7 prädestiniert.

Da beim diesem Druckverfahren durch die Bewegungen der Druckplattform in dem zähflüssigen Resin enorme Kräfte am Bauteil entstehen, ist die richtige Bauteilausrichtung und das Anlegen einer zuverlässigen und richtig positionierten Support-Struktur für den Druckerfolg entscheidend. In diesem Artikel ist das sehr gut erläutert.

Ich nutze für das Ausrichten des Modells und das Anlegen des Supports die kostenlose Software B9C .

Die Bauteilausrichtung und der Support wird in der B9C-Software vorgenommen.

Nach den Vorbereiteten Arbeiten in B9C erstellte ich in NanoDLP eine Plate, füllte die Harzwanne des Druckers mit Wanhao Resin Orange und startet den Druck mit einer Layerhöhe von 35 Mü (35 Micron).

NanoDLP: Positionieren des STL-Files auf der Druckplatte.

Einfüllen des Resins in die Harzwanne.

Nach gut 2,5 Stunden war das kleine Teil fertig und sah im Verlgeich zu einem Teil, welches ich mit einem FDM-Drucker aus ABS hergestellt habe, wirklich erheblich sauberer und präziser aus.

Das gedruckte Bauteil sitzt sicher auf der Druckplatte. Nach dem Druck wird das Teil in Isopropanol gereinigt, bevor es unter UV-Licht ausgehärtet wird.

Frisch gedruckt. Das Bauteil nach der Reinigung. Nun wird die Supportstruktur entfernt und das Teil anschließend ausgehärtet. Zu beachten: Die glatte Bauteil-Oberfläche.

Ohne sichtbare Layerstruktur: 35 Mü sind mit dem Auge nicht zu erkennen…

 

Im Vergleich: FDM-Druck (oben)  und STL-Ausdruck mit dem Wanhao D7 unten. Die Druckqualität des D7 überzeugt wirklich.

Nun werde ich zum aushärten von Resin-Druckteilen eine einfache Härtekammer bauen, in der ich eine 25W UV-Lampe nutzen werde.

Soweit aus der Bastelkammer

Horrido und stay tuned.

IPSC-Training: Digitaler Helfer zur Verbesserung der Abzugskontrolle

IPSC ist eine tolle Schießdisziplin. Sie ist dynamisch und gleichzeitig verlangt sie vom Sportler eine gehörige Portion Präzision. Die Fähigkeit eine Pistole oder ein Gewehr präzise zu schießen ist jedoch eine vergängliche Fertigkeit. Wenn man sie nicht permanent trainiert, wird man diese Fertigkeit mit der Zeit verlieren. Gleiches gilt auch für die im IPSC-Sport wichtigen dynamischen Fertigkeiten wie Ziehen der Waffe, Magazinwechsel, Positionswechsel, Schießen aus unterschiedlichen Anschlagarten, dem Zielwechsel usw. Wer die notwendigen Fertigkeiten nicht immer wieder trainiert, wird im Wettbewerb das Nachsehen haben.

Sowohl die Fertigkeiten für den präzisen Schuss als auch die dynamischen Skills lassen sich gut daheim trainieren. Dazu ist nicht viel nötig: Etwas Zeit – ich wende ca. 15-30 Minuten (täglich) auf, etwas Platz (3 bis 5 Meter reichen), und passendes Equipment. Viele Schützen nutzen ihre eigentliche IPSC-Waffe und machen sogenanntes Dryfire-Training, d.h. die Waffe wird ohne Munition bei den jeweiligen Übungen abgeschlagen. Dies ist eine weit verbreitete Trainings-Variante. Es gibt jedoch immer mehr IPSC-Schützen, die statt des Dryfire-Trainings für das Training abseits des Schießstands auf Airsoft-Waffen und passende Targets zurückgreifen. Der Vorteil liegt auf der Hand: Es wird durch die Airsoft-Blowback-Waffen ein Rückstoß der Waffe simuliert, der zwar schwächer als der vom Original ist, aber dennoch der Realität näher kommt, als dies beim Dryfire der Fall ist. Genauso wichtig ist aber auch das Treffer-Feedback, welches der Schütze durch den Aufprall der Kugeln auf das Ziel erhält. Nicht zu vergessen ist natürlich das erhebliche Einsparpotential an Munition – Plastik BB-Kugeln kosten nur ein Bruchteil von echter Munition. Zudem sind die Targets günstiger als beispielsweise Laser-Trainingssystem-Targets, die auch eine gewisse Verbreitung gefunden haben.

Ich nutze seit geraumer Zeit eine Gasblowback-Airsoft-Pistole und auch einen Gasblowback-Karabiner zum IPSC-Training daheim, um an meinen Fertigkeiten auch außerhalb des Schießstandes kontinuierlich zu arbeiten. Zum Training verwende ich speziell dafür entwickelte 1:3-IPSC-Training Targets der Firma Tactrainers sowie DIY-Nachbauten. Meinen Trainingsparcour selbst baue ich auf den Vorschlägen von Saul Kirschs Buch „Perfect Practice“ daheim im angepassten Maßstab 1:3 im Keller auf. Für größere Distanzen nutze ich hin und wieder auch meinen Garten. Zur Zeitnahme für das dynamische Training kommt die Shot Timer Pro App auf meinen Smartphone zum Einsatz, denn damit werden die Schüsse der Airsoft-Waffen zuverlässig erkannt.

Wie Eingangs erwähnt nutzt alle Schnelligkeit nicht viel, wenn die Schusspräzision nicht passt. Über die Targets beim Live-Fire-Training und die Airsoft-Tactrainers-Targets bekommt man schon ein gutes Feedback, um dann im Training gezielt an seiner Verbesserung arbeiten kann. Doch es bleiben immer Unwägbarkeiten bei der Suche nach Fehlern. Ist es das fehlerhafte Visierbild, ein schlechter Anschlag oder mangelnde Abzugskontrolle? Um den möglichen Fehlerquellen auf die Spur zu kommen und um an diesen dann im Sinne einer Verbesserung gezielt arbeiten zu können, ist meiner Meinung mehr Feedback als nur ein Einschussloch oder Treffer auf das o.g. Trainigstarget nötig. Beim Präzisionsschießen ist die Abzugskontrolle wohl der wichtigste und zugleich schwierigste Aspekt. Gerade wenn es um das Schießen mit der Pistole geht. Denn dadurch, dass die Pistole so klein und kurz ist, und nur an einem Punkt fixiert ist, überträgt sich jede Bewegung gleich auf die Visierung – dadurch schleichen sich Fehler ein.

Was also kann man machen, um seine Abzugskontrolle zu verbessern, wenn man in der zeitlich so kurzen Periode zwischen Anschlag und Schussabgabe sein Handling der Waffe beim Abziehen nicht wirklich überprüfen kann?

Die Antwort kommt in Form eines kleinen Trainingsgerätes, welches mit Bewegungssensoren bestückt ist und an die Waffe montiert wird. Dieses Gerät sammelt die Daten der verbauten Sensoren und funkt sie in Echtzeit via Bluetooth an das eigene Smartphone, auf dem eine App werkelt, die die Informationen in nützliche Informationen für den Schützen umwandelt. Dieses System heißt MantisX. Ich habe mir dieses System beim deutschen Händler bestellt, doch leider ist die Lieferzeit mit knapp vier Woche sehr lang. Daher hat mir das Unternehmen netterweise ein Leihgerät zum Testen zur Verfügung gestellt. Meine bisherigen Erfahrungen mit MantisX beim täglichen Training daheim und auch beim Training auf dem Schießstand werde ich folgend etwas näher beleuchten.

 

Lieferumfang: Eine einseitige Anleitung, ein Sticker und MantisX in einem soliden Pelicase.

Gut untergebracht: MantisX und USB-Lagekabel im Pelicase.

 

 

Das Handling von MantisX

MantisX-Einheit auf einer WE Gforce Glock 19-Airsoft-Pistole zum Training daheim. Hier im Einsatz und Test mit einem Android-Phone. Die MantisX-Einheit ist direkt an die Picantinny-Rail am Frame montiert.

MantisX ist absolut einfach in der Handhabung. Es wir einfach an die Picatinny-Montageschiene der Pistole oder des Gewehrs montiert. Wer an seiner Pistole keine entsprechende Rail hat, der kann direkt bei MantisX Picatinny-Rail-Magazinboden-Halterungen für seine Waffe bestellen, die statt des Werksmagazinbodens am Magazin montiert werden. Diese Halterungen eignen sich auch gut für IPSC-Training mit Holster.

Für Schooter die mit einer Airsoft-Pistole trainieren und einen 3D-Drucker besitzen, habe ich eine Picatinny-Magazinboden-Montagen für KWA/KSC Airsoft Glock-Magazine konstruiert. Damit kann dann MantisX auch mit geholsteter Waffe genutzt werden, um dynamisches IPSC-Training durchzuführen. Hier geht es zu der STL-Datei zum Download. Diese Montage sollte idealerweise aus ABS oder Nylon gedruckt werden, da dies Material am widerstandsfähigsten ist. Als Infill habe ich aus Stabilitätsgründen 80-100 Prozent gewählt.

3D-CAD-Modell des eigens konstruierten KSC/KWA Magazinbodens mit Pictinny-Rail für die Befestigung der MantisX-Einheit.

Der konstruierte Magazinboden wird im Slicer für den Druck passend ausgerichtet.

Der Magazinboden ist aus ABS fertig gedruckt.

KSC/KWA-Glock 19 Airsoft-Magazin: Der gedruckte Magazinboden (grau) ersetzt den Ursprünglichen (schwarz).

KSC/KWA Glock 19 Airsoft-Magazin mit gedrucktem Magazinboden und montiertem MantisX.

Ansicht von der Rückseite des KSC/KWA-Magazins. Gut zu erkennen ist die USB-Ladebuchse der MantisX-Einheit.

KSC/KWA GLock 19 Airsoftpistole zum IPSC-Training mit montierter MantisX-Einheit am Magazin.

MantisX montiert am Magazin der KSC/KWA Glock 19 Airsoft-Pistole. Diese Montageart ist geeignet für das IPSC-Training mit Holster.

Nachdem man die MantisX-Einheit an der Rail befestigt hat, drückt man den kleinen Knopf an der Unterseite, bis die LED dauerhaft grün leuchtet. Anschließend startet der Schütze die MantisX-App auf seinem Smartphone (Bluetooth muss eingeschaltet sein) und verbindet die App per „CONNECT“-Taste. Und dann kann es mit dem Training auch schon losgehen.

Ist der Akku leer (Der Akku hält bei mir gut und gerne eine Woche bei regelmäßiger Nutzung (30 Min/täglich)) blinkt die LED. Mit dem mitgelieferten Micro-USB-Ladekabel lädt man MantisX mit einem USB-Ladegerät in ca. 3h auf.

 

Die Nutzung von MantisX

MantisX misst grundsätzliche Mikrobewegungen kurz vor dem Abziehen bis circa 300 Millisekunden danach. Das System ist so entworfen, dass es in zahlreichen Schießszenarien und mit gängigen Waffentypen arbeiten kann. D.h. von Dryfire über Livefire bis hin zu CO2-Systemen wie Luftdruck- und Airsoft-Waffen.

Startbildschirm der MantisX-App.

In „SETTINGS“ werden vor Beginn des eigentlichen Trainings die Einstellungen vorgenommen.

Ich nutze die MantisX App-Version 2.4.5. Über den Menü-Punkt „SETTINGS“ werden zunächst die Grundeinstellungen wie Waffentyp, Schusshand, Montageposition des Sensors usw. vorgenommen. Anschließend wechselt man in den „TRAIN“-Bereich. Dort stehen neun unterschiedliche Modi zu Verfügung, diese sind:

  • „Open Training“: In diesem Mode kann man sein eigenes Training tracken
  • „MantisX Benchmark“: 10 Schüsse, es wird die Präzision und die Zeit festgehalten
  • „Timed Benchmark“: So schnell und präzise wie möglich schießen. 5, 8 oder 10 Schuss
  • „Compressed Suprise Break“: Auf IPSC-Tonsignal so schnell und präzise wie möglich Abziehen
  • „Reload, in Battery“: Schnelles Nachladen und einen präzisen Schuss abgeben
  • „Reload, out of Battery“: Ungeladene Waffe nachladen und einen präzisen Schuss so schnell wie möglich abgeben.
  • „Reload, Tactical“: Taktische Nachladen und ein präziser Schuss.
  • „Primary Hand Only“: Schießen nur mit der starken Hand.

Die neun Modi sind in erster Linie für statisches Training vorgesehen. Für dynamisches IPSC-Training nutze ich lediglich den Modus „Open Training“.

Teil-Übersicht zu den verfügbaren Trainingsmodes in der App.

Unterschiedliche Trainingsmodi: Die App hält z.Z. neun unterschiedliche Modes zum Training bereit. Hier ist der „Compressed Suprise Break“ zu sehen. In acht Modes sind Anleitungsvideos eingebunden – das macht es sehr anschaulich.

 

Das Feedback von MantisX

Ist man im Trainings- oder im History-Modus, stellt MantisX drei unterschiedliche Datenvisualisierungsmodi zur Verfügung – das Shot-Chart mit dem Kreis, ein Movement Chart mit Linien- und Balkendiagramm und den Bewegungstracker mit einem Fadenkreuz. Damit lässt sich das aufgenommene Geschehen bei Schussabgabe ansehen und analysieren.

Der History-Screen der MantisX-App.

Das MantisX Shot Chart zeigt in den rot markierten Bereichen die Abzugsfehler-ausprägung und -richtung an.

Fehlerinterpretation und Tips von MantisX zu Abzugsfehlern sind in der App integriert.

Ein weiteres Beispiel, wie MantisX zu bestimmten Fehlerbildern Verbesserungstips gibt.

Unter den Charts, die während des Trainings anwählbar sind, finde ich das Shot-Chart für meine Zwecke am wenigsten hilfreich, denn es zeigt eigentlich immer Fehler an, obwohl ich tatsächlich keine merkliche Bewegung im Handgelenk zeige, bekomme ich das Feedback „Breaking Wrist up“. Aber für Anfänger ist das Chart sicherlich eine gute Hilfe, um Abzugsfehler zügig beheben zu können.

Welche Charts ich hingegen sehr hilfreich finde sind die beiden weiteren Screens. Denn jeder Schütze weiß, dass Bewegungen die man während des Haltens und beim Abziehen macht, den größten Einfluss auf die Präzision haben. D.h. die Minimierung der Bewegung ist der Schlüssel zum guten Treffer. Das Movement Chart zeigt einem die relative Höhe der Bewegung für jeden Schuss an – sowohl für das Halten als auch für das Abziehen. Je näher man an der Mittellinie ist, desto weniger Bewegung wird getrackt und der Score ist am höchsten.

Mit diesem Chart ist beispielsweise gut die Haltebewegungsdauer (blau) und die Abzugsdauer (gelb) abzulesen.

Aus meiner Sicht am wertvollsten ist die Darstellung des dritten Charts. Denn dort werden die tatsächlichen Bewegungen eines jeden Schusses nachgezeichnet. Die grüne Linie zeigt die Millisekunden vor dem Abziehen. Gelb ist die Bewegung während der Betätigung des Abzugs und die rote Linie zeigt den Bewegungsverlauf nach dem der Schuss gebrochen ist. In dem Chart sind somit alle relevanten Informationen vereint. Idealerweise will man die grüne und die gelbe Linie eng beieinander haben. MantisX zeigt einem, wie sich diese Beziehung tatsächlich verhält. D.h. langsames Anlegen mit einem konzentrierten Fokus auf die grundlegenden Schießfertigkeiten bringen grün und gelb sowohl auf dem Screen als auch auf dem Schießspiegel zusammen. Schnelles Schießen hingegen zeigt sich in einer größeren Ausdehnung von grün und gelb und letztlich vermutlich auch auf dem Spiegel.

Sehr aussagekräftig: Das Movementchart zu jedem abgegebenen Schuss in der MantisX-App.

Ergebnis-Analyse eines dynamischen Trainingsdurchlaufs – hier Ziehen aus dem Holster. Deutlich ist die lange Anhaltephase (blau) zu erkennen. Beim Abziehen ist die Waffe leicht nach rechts gewandert.

Fazit

Insgesamt bin ich von den Feedbackmöglichkeiten und den damit transparent werdenden Trainingsfeldern begeistert.

Die Hardware macht einen soliden Eindruck und ist bisher ohne Fehlfunktionen in Betrieb gewesen. Prima ist, dass MantisX die App regelmäßig durch Updates verbessert und damit zukunftssicher macht.

Nun ist es nur noch an dem Schützen selbst – also mir, seine Fertigkeiten bei der Abzugskontrolle mit dem System stetig zu Trainieren. D.h. das Feedback von MantisX zielgerichtet zur persönlichen Verbesserung einsetzen – ob nun beim heimischen Training oder auf dem Schießstand. Bisher habe ich das System daheim zusammen mit meiner Airsoft-Pistole genutzt. Aber auch auf dem Schießstand kam MantisX zum Einsatz, um an meinen Fertigkeiten zu arbeiten.

Auch auf dem Schießstand kommt MantisX zum Einsatz. Hier an einer Glock 17 auf 25 Meter.

Aus meiner Sicht sind die knapp 175 Euro für das Trainings-System gut angelegt. MantisX kann man z.Z. in Deutschland nur über www.kl-strategic.com beziehen. Der Firma danke ich für die Leihstellung des Testgerätes.

 

Horrido und stay tuned.

 

Nachtrag (25.10.2017)

Offensichtlich sind elektronische Trainingshilfen für den Schießsport gerade sehr angesagt. Ich bin kürzlich auf ein System namens KINETIC gestoßen, welches auf dieser Website angekündigt wird. Es handelt sich dabei im Kern offensichtlich um drei Bewegungssensoren, die an Ober- und Unterarm sowie Hand getragen werden und ihre Bewegungen via Bluetooth an einen Rechner senden. Mehr als diese Infos findet man z.Z. auf der Website von KINETIC nicht.

Diese Video scheint aber KINETIC im Test zu zeigen:

Also, man darf gespannt sein. Ich halte die diesbezüglichen Entwicklungen im Auge.

Update (30.10.2017)

Es wurde bei youtube erneut ein Video veröffentlicht, in dem das System beim IPSC-Training testweise eingesetzt wird. Das sieht schon interessant aus. Allerdings bleibt noch offen, wie es das Training mit welchen Informationen tatsächlich sinnbringend unterstützen kann.

Hier das Video:

Schmelz- und Härte-Ofen: Nachrüstung einer Temperatursteuerung

Naber Schmelz- und Glühofen

Vor einigen Wochen war meine Freude riesig, als ich einen intakten Industrie-Schmelz- und Härte-Ofen der Firma Naber gegen eine Kiste Prosecco eintauschen konnte.

Das aus dem Jahre 1976 stammende Gerät ist ideal, um beispielsweise Aluminium, Zinn, Zink oder Messing zu schmelzen oder Werkzeugstähle wie z.B 115 CrV3 (Silberstahl) zu härten und anzulassen.

Aber gerade Härten und Anlassen erfordern eine exakte Temperatur – beim Naber-Ofen war allerdings nur eine prozentuale Temperatureinstellung über die Stromzuführung möglich. Im Praxisfall hätte dies bedeutet, immer wieder die Glüh- und Anlassfarben zu kontrollieren. Dies erschien mir zu unpraktisch. Da es online mittlerweile günstig zuverlässige Temperatursteuerungen mit entsprechenden Sensoren zu kaufen gibt, habe ich mich entschieden, eine solche Steuerung nachzurüsten.

Nach einiger Recherche entschied ich mich für diese PID-Steuerung mit dem Hochtemperatur-Sensor (bis 1.200°C), SSR und Kühlkörper – zusammen bezahlte ich inkl. Versand ca. 35,- €. Für ein passendes Gehäuse mit Anschlussbuchsen kamen noch einmal ca. 20,- oben drauf.

Die Einzelteiler der Steuerung. Rechts sieht man den 1200 °-Temperatursensor.

Display des Steuerungsgerätes.

Der Temperatur-Sensor. Die Leitung ist mit einem Hitzeschutzgeflecht abgeschirmt.

Im Gehäuse brachte ich neben der Regeleinheit das SSR mit Kühlkörper sowie eine 230V-Steckerbuchse unter.

Probepositionierung der Bauteile der Steuerung…

Passende Aussparungen sind leicht zu bewerkstelligen.

Verkabelung der Steuerungsbox ist fertig. Rechts oben ist die Steuerungs zu sehen. Links oben ist das SSR mit Kühlköper. Unten sieht man die 230V Steckerbuchse, an die der Ofen angeschlossen wird.

Für den Sensor baute ich eine kleine Halterung aus Al-Blech, die den Sensor über dem Belüftungsloch des Ofens in Position hält. Die Halterung ist am Gehäuse mit Kapton-Tape befestigt.

Sensorhalterung aus Alu-Blech.

Der Temperatursensor ist durch die Belüftungsöffnung in den Brennraum geführt.

Der Temperatursensor ragt in den Brennraum hinein.

 

Zur Zeit habe ich eine einfache On-/Off-Steuerung programmiert, PID ist aber auch möglich. D.h. es wird derzeit ein Soll-Wert eingestellt und die Steuerung schaltet solange den Ofen an, bis die Soll-Temperatur erreicht ist. Eine Hysterese von +/-1 °C bestimmt den Toleranzschaltwert.

Die Steuerung funktioniert…

… und der Ofen wird geregelt heiß… (Das Ist Display funktioniert richtig, nur die Kamera fängt nicht alle Ziffern ein, liegt an der Bildwiederholungsfrequenz).

Mit dieser Konfiguration habe ich in den ersten Tests gute Erfahrung gemacht. Um auf eine Temperatur von 810 °C (ist die Härtetemperatut von Silberstahl) zu kommen, benötig der Ofen ca. 38 Minuten. Die Steuerung schaltet dann bei 811° ab, bzw. bei 809° wieder ein, um die eingestellte Soll-Temperatur zu halten. Die Schaltfrequenz ist dank der sehr guten Isolierung des Ofens (Außentemperatur liegt bei ca. 35°C an der Oberfläche des Ofens) sehr niedrig.

Mal sehen, ob ich nun mal mit der PID-Steuerungsmöglichkeit experimentiere…

 

Horrido und stay tuned!